If you were alive during the 90s or 2000s, you surely remember that tune. It’s the anthem of Intel, the world’s most dominant chip maker, or at least, they were. Since then, Intel has had a pretty rough fall from glory. In fact, today, Intel barely ranks in the top 10 when it comes to the world’s largest chip makers. They come in behind Nvidia, TSMC, Broadcom, Samsung, ASML, AMD, Qualcomm, Applied Materials, and Texas Instruments.And when you contextualize this with Nvidia’s performance, things
Historically AMD has only been able to take the performance crown from Intel when Intel has made serious blunders. In the early 2000s, it was Intel commiting to Netburst in the belief that processors could scale past 5Ghz on their fab processes, if pipelined deeply enough. Instead they got caught out by unexpected quantum effects leading to excessive heat and power leakage, at the same time that AMD produces a very good follow-on to their Athlon XP line of CPUs, in the form of the Athlon 64.
At the time, Intel did resort to dirty tricks to lock AMD out of the prebuilt and server space, for which they ultimately faced antitrust action. But the net effect was that AMD wasn’t able to capitalize on their technological edge, Ave ended up having to sell off their fabs for cash, while Intel bought enough time to revise their mobile CPU design into the Core series of desktop processors, and reclaim the technological advantage. Simultaneously AMD was betting the farm on Bulldozer, believing that the time had come to prioritize multithreading over single-core performance (it wasn’t time yet).
This is where we enter the doldrums, with AMD repeatedly trying and failing to make the Bulldozer architecture work, while Intel coasted along on marginal updates to the Core 2 architecture for almost a decade. Intel was gonna have to blunder again to change the status quo – which they did, by betting against EUV for their 10nm fab process. Intel’s process leadership stalled and performance hit a wall, while AMD was finally producing a competent architecture in the form of Zen, and then moved ahead of Intel on process when they started manufacturing Zen2 at TSMC.
Right now, with Intel finally getting up to speed with EUV and working on architectural improvements to catch up with AMD (and both needing to bridge the gap to Apple Silicon now) at the same time that AMD is going from strength to strength with Zen revisions, we’re in a very interesting time for CPU development. I fear a bit for AMD, as I think the fundamentals are stronger for Intel (stronger data center AI value proposition, graphics group seemingly on the upswing now that they’re finally taking it seriously, and still in control of their destiny in terms of fab processes and manufacturing) while AMD is struggling with GPU and AI development and dependent on TSMC, perpetually under threat from mainland China, for process leadership. But there’s a lot of strong competition in the space, which hasn’t been the case since the days of the Northridge P4 and Athlon XP, and that’s exciting.
Historically AMD has only been able to take the performance crown from Intel when Intel has made serious blunders. In the early 2000s, it was Intel commiting to Netburst in the belief that processors could scale past 5Ghz on their fab processes, if pipelined deeply enough. Instead they got caught out by unexpected quantum effects leading to excessive heat and power leakage, at the same time that AMD produces a very good follow-on to their Athlon XP line of CPUs, in the form of the Athlon 64.
At the time, Intel did resort to dirty tricks to lock AMD out of the prebuilt and server space, for which they ultimately faced antitrust action. But the net effect was that AMD wasn’t able to capitalize on their technological edge, Ave ended up having to sell off their fabs for cash, while Intel bought enough time to revise their mobile CPU design into the Core series of desktop processors, and reclaim the technological advantage. Simultaneously AMD was betting the farm on Bulldozer, believing that the time had come to prioritize multithreading over single-core performance (it wasn’t time yet).
This is where we enter the doldrums, with AMD repeatedly trying and failing to make the Bulldozer architecture work, while Intel coasted along on marginal updates to the Core 2 architecture for almost a decade. Intel was gonna have to blunder again to change the status quo – which they did, by betting against EUV for their 10nm fab process. Intel’s process leadership stalled and performance hit a wall, while AMD was finally producing a competent architecture in the form of Zen, and then moved ahead of Intel on process when they started manufacturing Zen2 at TSMC.
Right now, with Intel finally getting up to speed with EUV and working on architectural improvements to catch up with AMD (and both needing to bridge the gap to Apple Silicon now) at the same time that AMD is going from strength to strength with Zen revisions, we’re in a very interesting time for CPU development. I fear a bit for AMD, as I think the fundamentals are stronger for Intel (stronger data center AI value proposition, graphics group seemingly on the upswing now that they’re finally taking it seriously, and still in control of their destiny in terms of fab processes and manufacturing) while AMD is struggling with GPU and AI development and dependent on TSMC, perpetually under threat from mainland China, for process leadership. But there’s a lot of strong competition in the space, which hasn’t been the case since the days of the Northridge P4 and Athlon XP, and that’s exciting.